Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(9): 2247-2260, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32786550

RESUMO

Graphene oxide derivatives (GODs) have superb physical/chemical properties with promise for applications in biomedicine. Shape, size, and chemistry of the GODs are identified as the key parameters that impact any biological system. In this work, the GODs with a wide range of shapes (sheets, helical/longitudinal ribbons, caps, dots), sizes (10 nm to 20 µm), and chemistry (partially to fully oxidized) are synthesized, and their cytotoxicity in normal cells (NIH3T3) and colon cancer cells (HCT116) are evaluated. The mechanisms by which the GODs induce cytotoxicity are comprehensively investigated, and the toxic effects of the GODs on the NIH3T3 and the HCT116 cells are compared. While the GODs show no toxicity under the size of 50 nm, they impose moderate toxic effects at the sizes of 100 nm to 20 µm (max viability >57%). For the GODs with the similar size (100-200 nm), the helical ribbon-like structure is found to be much less toxic than the longitudinal ribbon structure (max viability 83% vs 18%) and the tubular structure (0% viability for the oxidized carbon nanotubes). It is also evident that the level of oxidation of the GOD is inversely related to the toxicity. Although the extent of GOD-induced cytotoxicity (reduction of cell viability) to the two cell lines is similar, their toxicity mechanisms are interestingly found to be substantially different. In the HCT116 cancer cells, cell membrane leakage leads to DNA damage followed by cell death, whereas in the NIH3T3 normal cells, increases in oxidative stress and physical interference between the GODs and the cells are identified as the main toxicity sources.


Assuntos
Grafite/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Células HCT116 , Humanos , Camundongos , Células NIH 3T3 , Tamanho da Partícula
2.
Nanoscale ; 11(6): 2999-3012, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30698183

RESUMO

Biological molecules have promising potential to exfoliate graphite and produce biocompatible graphene nano-materials for biomedical applications. Here, a systematic design of a histidine-rich lipidated peptide sequence is presented that simultaneously exfoliates graphite flakes and functionalizes the resulting graphene nanosheets (∼150 nm lateral size) with long-term dispersion stability in aqueous solution (>8 months). The details of peptide/peptide and peptide/graphite interactions are probed using various microscopy, spectroscopy and molecular dynamics simulation methods. The results show that histidine and stearic acid interact with the graphite surface through π-π stacking and hydrophobic forces, respectively. Surface-assisted assembly of peptide molecules is then initiated via hydrogen bonds between deprotonated histidine segments, and a textured peptide nano-structure is formed. The work of adhesion between the peptide and graphite is found to be high enough to promote exfoliation of graphite flakes through layer-by-layer peeling of graphene nanosheets. The positively charged arginine in the peptide is exposed outward, and is responsible for the stable dispersion. The peptide molecules are sufficiently small, presenting the possibility to insert into and increase the spacing between the graphitic layers for enhanced exfoliation. The peptide-functionalized graphene nanosheets not only show great biocompatibility with cells in vitro, but also enhance cancer drug uptake by the cells.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Histidina/química , Lipopeptídeos/química , Nanoestruturas/química , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
3.
J Phys Chem B ; 119(35): 11867-78, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26266528

RESUMO

Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

4.
ACS Nano ; 9(6): 5833-45, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26028162

RESUMO

Bamboo structured nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWCNTs) have been successfully unzipped by a chemical oxidation route, resulting in nitrogen-doped graphene nanoribbons (CN(x)-GNRs) with a multifaceted microstructure. The oxidation of CN(x)-MWCNTs was carried out using potassium permanganate in the presence of trifluoroacetic acid or phosphoric acid. On the basis of the high resolution transmission electron microscopy studies, the bamboo compartments were unzipped via helical or dendritic mechanisms, which are different from the longitudinal unzipping of open channel MWCNTs. The product graphene oxide nanoribbons were simultaneously reduced and doped with nitrogen by thermal annealing in an ammonia atmosphere. The effects of the annealing temperature, time, and atmosphere on the doping level and types of the nitrogen functional groups have been investigated. X-ray photoelectron spectroscopy results indicate that a wide range of doping levels can be achieved (4-9 at %) simply by changing the annealing conditions. Pyridinic and pyrrolic nitrogen functional groups were the dominant species that were attached to the edges of the CN(x)-GNRs. The GNRs, with a faceted structure and pyridinic and pyrrolic groups on their edges, have abundant nitrogen sites. These active sites could play a vital role in enhancing the electrocatalytic performance of GNRs.

5.
ACS Appl Mater Interfaces ; 7(14): 7786-94, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25793636

RESUMO

Bamboo structured nitrogen doped multiwalled carbon nanotubes have been helically unzipped, and nitrogen doped graphene oxide nanoribbons (CNx-GONRs) with a multifaceted microstructure have been obtained. CNx-GONRs have then been codoped with nitrogen and boron by simultaneous thermal annealing in ammonia and boron oxide atmospheres, respectively. The effects of the codoping time and temperature on the concentration of the dopants and their functional groups have been extensively investigated. X-ray photoelectron spectroscopy results indicate that pyridinic and BC3 are the main nitrogen and boron functional groups, respectively, in the codoped samples. The oxygen reduction reaction (ORR) properties of the samples have been measured in an alkaline electrolyte and compared with the state-of-the-art Pt/C (20%) electrocatalyst. The results show that the nitrogen/boron codoped graphene nanoribbons with helically unzipped structures (CNx/CBx-GNRs) can compete with the Pt/C (20%) electrocatalyst in all of the key ORR properties: onset potential, exchange current density, four electron pathway selectivity, kinetic current density, and stability. The development of such graphene nanoribbon-based electrocatalyst could be a harbinger of precious metal-free carbon-based nanomaterials for ORR applications.

6.
J Biomech ; 45(16): 2866-75, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22985476

RESUMO

The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal connectivities resulted in a wide range of compressive behaviors in scaffold models, from elastic-plastic to fully brittle. The Maxwell necessary criterion for rigidity was used to explain mechanical behavior of the scaffolds. Nodal connectivity of 4 satisfied Maxwell's criterion for rigidity in the examined structures. In a stress-strain curve of scaffolds with cubic unit cells and nodal connectivities of 3 and 4, pore deformation was observed after yielding. On the other hand, scaffolds with trigonal unit cells and nodal connectivities of 4 and 6, exhibited brittle behavior in the absence of pore deformation. These results highlight the role of nodal connectivity on failure mechanism and subsequently mechanical performance of scaffolds. This study reveals that appropriate pore geometry can provide sufficient condition for rigidity when Maxwell's necessary condition is satisfied. In addition, this study demonstrates that Maxwell's criterion can be used in pre-designing of pore geometries for scaffolds with distinct nodal connectivities.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Simulação por Computador , Análise de Elementos Finitos , Teste de Materiais , Modelos Teóricos , Porosidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...